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Abstract. In the application of face recognition, eyeglasses could signif-
icantly degrade the recognition accuracy. A feasible method is to collect
large-scale face images with eyeglasses for training deep learning meth-
ods. However, it is difficult to collect the images with and without glasses
of the same identity, so that it is difficult to optimize the intra-variations
caused by eyeglasses. In this paper, we propose to address this problem
in a virtual synthesis manner. The high-fidelity face images with eye-
glasses are synthesized based on 3D face model and 3D eyeglasses. Mod-
els based on deep learning methods are then trained on the synthesized
eyeglass face dataset, achieving better performance than previous ones.
Experiments on the real face database validate the effectiveness of our
synthesized data for improving eyeglass face recognition performance.
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1 Introduction

In recent years, deep learning based face recognition systems [1,2,3,1] have
achieved great success, such as Labeled Faces in the Wild (LFW) [5], YouTube
Faces DB (YFD) [0], and MegaFace [7].

However, in practical applications, there are still extra factors affecting the
face recognition performance, e.g., facial expression, poses, occlusions etc. Eye-
glasses, especially black-framed eyeglasses significantly degrade the face recog-
nition accuracy (see Table 4). There are three common categories of eyeglasses:
thin eyeglasses, thick eyeglasses, and sunglasses. In this work, we mainly focus on
the category of thick black-framed eyeglasses, since the effects of thin eyeglasses
are tiny, while the impact of sunglasses are too high because of serious identity
information loss in face texture.

The main contributions of this work include: 1) A eyeglass face dataset named
MeGlass, including about 1.7K identities, is collected and cleaned for eyeglass
face recognition evaluation. It will be made public on https://github.com/
cleardusk/MeGlass. 2) A virtual eyeglass face image synthesis method is pro-
posed. An eyeglass face training database named MsCeleb-Eyeglass is gener-
ated, which helps improve the robustness to eyeglass. 3) A novel metric learning
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method is proposed to further improves the face recognition performance, which
is designed to adequately utilize the synthetic training data.

The rest of this paper is organized as follows. Section 2 reviews several re-
lated works. Our proposed methods are described in Section 3. The dataset
description is in Section 4. Extensive experiments are conducted in Section 5
to validate the effectiveness of our synthetic training data and loss function.
Section 6 summarizes this paper.

2 Related Work

Automatic eyeglasses removal. Eyeglasses removal is another method
to reduce the effect of eyeglasses on face recognition accuracy. Several previous
works [9,10,11,12] have studied on automatic eyeglasses removal. Saito et al. [J]
constructed a non-eyeglasses PCA subspace using a group of face images without
eyeglasses, one new face image was then projected on it to remove eyeglasses.
Chenyu Wu et al. [10] proposed an intelligent image editing and face synthesis
system for automatic eyeglasses removal, in which eyeglasses region was first
detected and localized, then the corrupted region was synthesized adopting a
statistical analysis and synthesis approach. Park et al. [12] proposed a recursive
process of PCA reconstruction and error compensation to further eliminate the
traces of thick eyeglasses. However, these works did not study the quantitative
effects of eyeglasses removal on face recognition performance.

Virtual try-on. Eyeglass face image synthesis is similar to virtual eyeglass
try-on. Recently, eyeglasses try-on has drawn attentions in academic community.
Niswar et al. [15] first reconstructed 3D head model from single image, 3D eye-
glasses were next fitted on it, but it lacked the rendering and blending process
compared with our synthesis method. Yuan X et al. [13] proposed a interactive
real time virtual 3D eyeglasses try-on system. Zhang, Q et al. [14] firstly took the
refraction effect of corrective lenses into consideration. They presented a system
for trying on prescription eyeglasses, which could produce a more real look of
wearing eyeglasses.

Synthetic images for training. Recently, synthetic images generated from
3D models have been studied in computer vision [17,18,19,20]. These works
adopted 3D models to render images for training object detectors and view-
point classifiers. Because of the limited number of 3D models, they tweaked the
rendering parameters to generate more synthetic samples to maximize the model
usage.

3 Proposed Method

3.1 Eyeglass image synthesis

We describe the details of eyeglass face synthesis in this section. To generate
faces with eyeglasses, we estimate the positions of the 3D eyeglasses based on
the fitted 3D face model and then render the 3D eyeglasses on the original face
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Fig. 1: Four pairs of origin-synthesis images selected from MsCeleb.

3D Eyeglass Fitting

+ )

OO

Input Face Image Synthetic Result

Input 3D Eyeglass

Fig. 2: The pipeline of eyeglass synthesis.

images. The whole pipeline of our eyeglass faces synthesis is shown in Fig. 2.
Firstly, we reconstruct the 3D face model based on pose adaptive 3SDMM fitting
method [22], which is robust to pose. Secondly, the 3D eyeglass is fitted on the
reconstructed 3D face model. The fitting is based on the corresponding anchor
points on the 3D eyeglass and 3D fitted face model, where the indices of these
anchor points are annotated beforehand. Then z-buffer algorithm and Phong
illumination model are adopted for rendering, and the rendered eyeglass image
is blended on the original image to generate the final synthetic result.

The 3D eyeglass fitting problem is formed as Eq. 1, where f is the scale factor,
Pr is the orthographic projection matrix, pg is the anchor points on 3D eyeglass,
py is the anchor points on reconstructed 3D face model, R is the 3 x 3 rotation
matrix determined by pitch(a), yaw(53), and roll(y) and ¢34 is the translation
vector.

arg | min ||+ Pre R (py +taa) ~ pyll M)

Although the amount of images of MsCeleb is large, the model may overfit
during training if the patterns of synthetic eyeglasses are simple. To increase the
diversity of our synthetic eyeglass face images, we inject randomness into two
steps of our pipeline: 3D eyeglass preparation and rendering. For 3D eyeglasses,
we prepare four kinds of eyeglasses with different shapes and randomly select
one as input. For eyeglass rendering, we explore three sets of parameters: light
condition, pitch angle and vertical transition of eyeglass. For the light condition,
the energies and directions are randomly sampled. Furthermore, to simulate
the real situations of eyeglass wearing, we add small perturbations to the pitch
angle ([—1.5,0.8]) and vertical transition ([1,2] pixel). Finally, we put together
the synthetic eyeglass face images with original images as our training datasets.
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Table 1: Our ResNet-22 network structure. Conv3.x, Conv4.x and Conv5.x in-
dicates convolution units which may contain multiple convolution layers and
residual blocks are shown in double-column brackets. E.g., [3 x 3, 128] x 3 de-
notes 3 cascaded convolution layers 128 feature maps with filters of size 3 x 3,
and S2 denotes stride 2. The last layer is global pooling.

Layers 22-layer CNN
Convl.x [5x5, 32]x1, S2
Conv2.x [3x3, 64]x1, S1
[3 % 3,128]
Conv3.x x 3, 52
3% 3,128
(3 x 3,256]
Conv4.x x 4, S2
3 x 3,226
[3x 3,512]
Convb.x x 3, 52
3 x 3,512
Global Pooling 512

3.2 Network and loss

Network We adapt a 22 layers residual network architecture based on [21]
to fit our task. The original ResNet is designed for ImageNet [25], the input
image size is 224 x 224, while ours is 120 x 120. Therefore, we substitute the
original 7 x 7 convolution in first layer with 5 x 5 and stack one 3 x 3 convolution
layer to preserve dimensions of feature maps. The details of our ResNet-22 are
summarized in Table 1.

Loss Due to the disturbance of eyeglass on feature discrimination, we propose
the Mining-Contrasive loss based on [20] to further enlarge the inter-identity
differences and reduce intra-identity variations. The form of our proposed loss is
in Eq. 2.

| | (4,5)€P ‘ | (4,5)EN

Where f; and f; are vectors extracted from two input image samples, P is
hard positive samples set, A is hard negative samples set, d(f;, f;) = m
is cosine similarity between extracted vectors.

Gradual sampling. Besides, we employ the gradual process into data sam-
pling to make the model fit the synthetic training images in a gentle manner. In
naive sampling, the probability of eyeglass face image of each identity is fixed at
0.5. It means that we just brutally mix MsCeleb and MsCeleb-Eyeglass datasets.
We then generalize the sampling probability as p = A - n 4 pg, where n is the
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Table 2: Summary of dataset description. G and NG indicate eyeglass and non-
eyeglass respectively. Mixture means the MsCeleb and MsCeleb-Eyeglass.

Dataset Identity Images G NG
MeGlass 1,710 47,917 14,832 33,085
Testing set 1,710 6,840 3,420 3,420

Training set(MsCeleb) 78,765 5,001,877 - -
Training set(Mixture) 78,765 10,003,754 - -

M S La - ‘
Fig. 3: Sample images of our testing set. For each identity, we show two faces
with and without eyeglasses.
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number of iterations, A is the slope coefficient determining the gradual process,
po is the initialized probability value.

4 Dataset Description

In this section, we describe our dataset in detail and the summary is shown in
Table 2.

4.1 Testing set

We select real face images with eyeglass from MegaFace [7] to form the MeGlass
dataset. We first apply an attribute classifier to classify the eyeglass and non-
eyeglass face images automatically. After that, we select the required face images
manually from the attibute-labeled face images. Our MeGlass dataset contains
14,832 face images with eyeglasses and 33,087 images without eyeglasses, from
1,710 subjects.

To be consistent with the evaluation protocol (in Section 4.3), we select two
faces with eyeglasses and two faces without eyeglasses from each identity to
build our testing set and the total number of images is 6, 880. Fig. 3 shows some
examples of testing set with and without eyeglasses.
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4.2 Training set

Two types of training set are adopted, one is only the MsCeleb and the other is
the mixture of MsCeleb with synthetic MsCeleb-Eyeglass. Our MsCeleb clean list
has 78, 765 identities and 5,001, 877 images, which is slightly modified from [23].
For each image, we synthesize a eyeglass face image using the method proposed in
Section 3.1. Therefore, there are totally 10,003, 754 images from 78, 765 subjects
in the mixture training set.

4.3 Evaluation protocol

In order to examine the effect of eyeglass on face recognition thoroughly, we
propose four testing protocols to evaluate different methods.

I) All gallery and probe images are without eyeglasses. There are two non-
eyeglass face images per person in gallery and probe sets, respectively.

IT) All gallery and probe images are with eyeglasses. There are two eyeglasses
face images per person in gallery and probe sets, respectively.

IIT) All gallery images are without eyeglasses, and all probe images are with
eyeglasses. There are two non-eyeglass face images per person in gallery
set and there are two eyeglass face images per person in probe set.

IV) Gallery images contain both eyeglass images and non-eyeglass images, so
as probe images. There are four face images (including two non-eyeglass
and two eyeglass face images) per person for gallery and probe sets.

5 Experiments

Firstly, we evaluate the impact of eyeglasses on face recognition. Second, sev-
eral experiments are conducted to study the effect of synthetic training data
and proposed loss. In experiments, two losses including the classification loss
A-Softmax and the metric learning based contrastive loss are investigated. To-
tally there are four deep learning models are trained based on different losses
and training sets. Table 3 lists the four deep face models. For ResNet-22-A, we
apply A-Softmax loss to learn the model from original MsCeleb dataset. We
then finetune the model on MsCeleb dataset using contrastive loss to obtain
ResNet-22-B. We also finetune the ResNet-22-A model on MsCeleb and its syn-
thetic eyeglasses database to obtain ResNet-22-C. The ResNet-22-D is finetuned
from base model ResNet-22-A using gradual sampling strategy with the slope
coefficient A of 0.00001 and pq of 0.

5.1 Experiments Settings

Our experiments are based Caffe [27] framework and Tesla M40 GPU. All face
images are resized to size 120 x 120, then being normalized by subtracting 127.5
and being divided by 128. We use SGD with a mini-batch size of 128 to optimize
the network, with the weight decay of 0.0005 and momentum of 0.9. Based on
these configurations, the training speed can reach about 260 images per second
on single GPU and the inference speed is about 1.5ms per face image.
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Table 3: The configuration settings of different models. ResNet-22-B, ResNet-
22-C and ResNet-22-D are all finetuned from ResNet-22-A. GS indicates gradual
sampling.

Model Training Data Loss Strategy

ResNet-22-A MsCeleb A-Softmax [1] -
ResNet-22-B MsCeleb Mining-Contrasive  Finetune
ResNet-22-C Mixture Mining-Contrasive  Finetune
ResNet-22-D Mixture Mining-Contrasive Finetune+GS

Table 4: Recognition performance (%) of ResNet-22-A following protocols I-IV.

Protocol TPR@FAR=10"% TPRQFAR=10"° TPRQFAR=10"% Rank1

I 96.14 91.49 84.68 98.48
II 94.09 86.55 69.21 96.90
IIT 88.13 74.72 59.34 95.61
I\Y 78.17 60.25 41.36 92.31

5.2 Effect of eyeglass on face recognition

In this experiment, we use the original MsCeleb database only as the training
set to examine the robustness of traditional deep learning model to eyeglasses.
Table 4 shows the results of ResNet-A model tested on four protocols. From
the results, one can see that the ResNet-A model achieves high recognition accu-
racy on protocol I, which is without eyeglass occlusion. However, its performance
degrades significantly on protocols II-IV, where eyeglasses occlusion occurs in
gallery or probe set, especially for the TPR at low FAR. It indicates that the
performance of deep learning model is sensitive to eyeglasses occlusion.

5.3 Effectiveness of synthetic data and proposed loss

Table 5: Recognition performance (%) of ResNet-22-B following protocols I-IV.
Protocol TPR@FAR=10"* TPR@FAR=10"" TPRQFAR=10"° Rankl

I 96.61 91.26 87.02 98.60
II 94.91 87.87 73.27 97.08
111 89.55 76.86 62.56 96.02

v 81.96 65.68 46.71 94.18
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Fig.4: From (a) to (d): ROC curves of protocols I-IV. For protocols I-II, the
curves are almost the same. While for protocols ITI-IV, ResNet-22-C and ResNet-

D models outperform the other two. Especially in protocol IV, they outperform
by a large margin (better view on electronic version).

For comparison, we further train deep face model, ResNet-C, using the mix-
ture of the original MsCeleb and its synthesized eyeglasses version MsCeleb-
Eyeglass. Table 5 and Table 6 show the comparison results of ResNet-B and
ResNet-C following four protocols. It can be seen that using our synthesized
eyeglass face images, it significantly improves the face recognition performance
following protocol III-IV, especially at low FAR. It enhances about 20 percent
when FAR=10"6 on protocol IV, which is the hardest case in four configura-
tions, indicating the effectiveness of virtual face synthesis data for the robustness
improvement of face deep model. Moreover, with the face synthesis data , the
proposed loss function with gradual sampling, model ResNet-22-D achieves the
best results on four protocols.

Finally, we also plot the ROC curves for four protocols in Fig. 4 to further
validate the effectiveness of our synthetic training dataset and proposed loss
function.
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Table 6: Recognition performance (%) of ResNet-22-C following protocols I-TV.

Protocol TPR@FAR=10"* TPRQFAR=10"° TPRQFAR=10"° Rankl

I 96.20 91.58 85.94 98.19
II 94.80 87.31 78.89 96.73
111 90.35 80.40 67.93 96.67
v 89.94 79.88 66.82 96.67

Table 7: Recognition performance (%) of ResNet-22-D following protocols I-IV.

Protocol TPR@FAR=10"* TPRQFAR=10"°> TPR@QFAR=10"° Rankl

I 96.37 91.99 86.37 98.30
I 94.68 87.54 78.68 96.78
111 90.54 80.71 68.10 96.75
v 90.14 80.32 66.92 96.73

6 Conclusion

In this paper, we propose a novel framework to improve the robustness of face
recognition with eyeglasses. We synthesize face images with eyeglasses as train-
ing data based on 3D face reconstruction and propose a novel loss function to
address this eyeglass robustness problem. Experiment results demonstrate that
our proposed framework is rather effective. In future works, the virtual-synthesis
method may be extended to alleviate the impact of other factors on the robust-
ness of face recognition encountered in real life application.
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