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ABSTRACT Emotion recognition has a key role in affective computing. Recently, fine-grained emotion
analysis, such as compound facial expression of emotions, has attracted high interest of researchers working
on affective computing. A compound facial emotion includes dominant and complementary emotions
(e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions
(e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with lim-
ited number of categories and unbalanced data distributions, with labels obtained automatically by machine
learning-based algorithms which could lead to inaccuracies. To address these problems, we released the
iCV-MEFEDdata set, which includes 50 classes of compound emotions and labels assessed by psychologists.
The task is challenging due to high similarities of compound facial emotions from different categories.
In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG work-
shop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments
on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs
happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However,
we hope the proposed data set can help to pave the way for further research on compound facial emotion
recognition.

INDEX TERMS Dominant and complementary emotion recognition, compound emotions, fine-grained face
emotion dataset.

I. INTRODUCTION
Artificial intelligence agents such as robots and computers
have become a prominent aspect of our lives and their
presence will give rise to unique technologies. Therefore,
Human-Computer Interaction (HCI) or Human-Robot

Interaction (HRI) experiences become more realistic if
computers/robots are capable of recognizing more detailed
human expressions during the interaction. Hence, introduc-
ing techniques that enable automatic recognition of more
detailed emotions than the classical ones is of significant
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interest. Emotion and expression recognition are natural and
intuitive for humans, yet extremely complicated tasks dur-
ing HCI, with applications ranging from mobile computing
and gaming to health monitoring and robotics [1]–[6]. Auto-
matic facial expression recognition can also be applied in
vision-based automatic interactive machines [7]–[11], human
emotion analysis [12]–[16], assistive robotics [17]–[20],
and human-machine interfaces [21]–[24]. In general, facial
expression recognition has become an important research
topic within HCI/HRI communities and related areas, such
as machine learning, computer vision, human cognition and
pattern recognition.

Automatic recognition of facial expressions is a complex
task because of significant variations in the physiognomy
of faces with respect to person’s identity, environment illu-
mination conditions and head pose [25], [26]. When com-
pound emotion recognition is considered, the task can be
even harder. Currently, one of the main limitations to advance
the research on automatic recognition of compound emo-
tions is the lack of large and public labeled datasets in the
field.

State-of-the art works for facial expression recognition
usually focus on seven basic emotions, namely happy,
surprised, fearful, sad, angry, disgust, and contempt [27].
However, there are some attempts to find out more precise
and detailed facial emotion expressions [28]–[31] due to
recent advances in the field of compound emotions [32].
Psychologists have come to the conclusion that differ-
ent regions of the face convey different types of affective
information [33]–[35]. This means that some parts of the
face convey some emotions better than others. For instance,
there is some evidence [33] that the upper part of the face,
mainly the eyes and eyebrows, is more informative for human
subjects in recognizing anger and fear. On the other hand,
disgust and happiness appear to be mainly expressed with
the mouth [31], [33], [36], whereas surprise can be conveyed
equally with both parts of the face.

Compound emotion categories [32], [37], [38] have been
introduced in order to investigate the emotional state of a per-
son in a more detailed way through facial emotion expression
analysis. Such pioneering works played an important role
in the context of facial emotion expression analysis, as they
propose to understand and recognize facial expressions from
a different (fine-grained) point of view.

However, there are some limitations of fine-grained facial
emotion recognition in existing works. First, the number of
public databases in this field is limited [32], [39]. Second,
current available public datasets have a small number of cate-
gories, i.e., 23 (EmotionNet [38]) and 22 (CFEE [32]), which
may cover just a small portion of all possible compound
emotions. Third, the labels provided with EmotionNet dataset
are related to automatically detected Action Units (AU),
which are used for compound emotion analysis. Although the
AUs can be converted to compound emotion category,
the results might not be accurate [38], [39] due to errors
introduced by the AU recognition module.

To address the above mentioned limitations, we propose
the following contributions:
• We released the iCV-MEFED dataset,1 which contains
50 compound emotion categories and has more than
30,000 images labeledwith the support of psychologists,
which should be able to provide labels with high accu-
racy. Although EmotionNet has about 1 million images,
it contains noise labels (i.e., automatically obtained),
as well as it is extremely unbalanced (as detailed in
Sec. V).

• To push the research on the field, we organized a chal-
lenge [23] based on the iCV-MEFED dataset, held at the
FG 2017. In this paper, we provide a substantial exten-
sion of our previous work [23]. In this sense, additional
details are presented, and a more comprehensive and
up-to-date literature review is provided. Furthermore,
we introduce the top three winner methods in details and
conduct additional experiments to analyze their perfor-
mances.

The rest of this paper is organized as follows. Section II
provides an overview of the related work on compound
emotion recognition of facial expression. The dominant and
complementary emotion recognition challenge is introduced
in Section III, where the overall description and motivation of
the iCV-MEFED dataset is presented. Section IV describes
in short the top three winners’ method from the organized
competition, and Section V shows the performances of differ-
ent methods on the iCV-MEFED dataset. Final discussions,
suggestions for future work and conclusions are presented
in Section VI.

II. RELATED WORKS
Past research on facial emotion expression recognition
mainly focused on seven basic categories: happy, surprised,
fearful, sad, angry, disgust, and contempt [27], [40]. However,
there are many complex and more elaborated facial expres-
sions humans do, built from the combination of different
basic one, that started to attract more attention from the past
few years within the computer vision and machine learning
communities, i.e., the so called compound emotions.

Du et al. [32] introduced compound facial emotion recog-
nition and defined 22 emotion categories (e.g. happily-
disgusted, sadly-fearful, sadly-angry, etc). They used Facial
Action Coding System (FACS) [41] analysis to show the
production of these distinct categories and released the
Compound Facial Expressions of Emotion (CFEE) database.
The CFEE dataset contains 5,060 facial images labeled
with 7 basic emotions and 15 compound emotions for
230 subjects. Geometric and appearance information
(extracted from landmark points captured from frontal face
images) are combinedwith a nearest-mean classifier to recog-
nize compound facial expressions. Authors reported accuracy
performance on the CFEE database of 73.61% when using
geometric features only, 70.03% when using appearance

1http://icv.tuit.ut.ee/icv-mefed-database.html

26392 VOLUME 6, 2018



J. Guo et al.: Dominant and Complementary Emotion Recognition From Still Images of Faces

features, and 76.91% when both features are combined in a
single feature space.

Aleix and Du [37] defined a continuous model consistent
with compound facial expression analysis. The continuous
model explains how expressions of emotion can be seen
at different intensities. In their work, multiple (compound)
emotion categories can be recognized by linearly combin-
ing distinct continuous face spaces. Authors showed how
the resulting model can be employed for the recognition of
facial emotion expressions, and proposed new research direc-
tions from which the machine learning and computer vision
communities could keep pushing the state-of-the-art on the
field.

Benitez-Quiroz et al. [38] proposed an approach to quickly
annotate Action Units (AUs) and their intensities, as well
as their respective emotion categories for facial expres-
sion recognition. Thus, the EmotioNet dataset was released.
In their work, geometric and shading features are extracted.
Geometric features are defined as second-order statistics of
facial landmarks (i.e., distances and angles between facial
landmarks). Shading features, extracted using Gabor filters,
model the shading changes due to local deformations
of skin regions. This way, each AU is represented
with shape and geometric features. Afterwards, Kernel
Subclass Discriminant Analysis (KSDA) [42] is used
to determine whether or not a specific AU is active.
Benitez-Quiroz et al. [39] reported obtained AU annota-
tion accuracy about 81%. Finally, according to different
AU combinations, 23 emotion categories were defined.

The recently proposed EmotionNet Challenge [39]
included two tracks. The first track was related to automatic
detection of 11 AUs, whereas the second one addressed
compound emotion. As the focus of our work is on the
recognition of compound emotions, only the second track
is reviewed. Briefly describing, the EmotionNet challenge
employed the dataset defined in [38]. The training, valida-
tion and test sets were carefully defined to include 950K,
2K and 40K facial images, respectively. The validation and
test sets were manually annotated. However, the training set
were automatically annotated using the algorithm proposed
in [38]. Finally, 16 basic and compound emotion categories
have been defined.

Li and Deng [43] presented the RAF-DB (in the wild)
database, containing 29,672 images. Each image was
independently labeled by about 40 annotators based on the
crowdsourcing annotation. The dataset consisted of 7 basic
emotions and 12 compound emotions. Authors also pro-
posed a deep locality-preserving learningmethod for emotion
recognition. Experiments showed that the average accuracy
of compound emotion recognition was about 44.55%, which
demonstrated that the compound emotion recognition (in the
wild) was a very challenging task.

The main limitation of [32], [38], [39], and [43] is that
they provided very distinct compound facial emotion with
limited categories (ranging from 16 to 23, as it can be seen
in Table 1). In addition, the annotated labels provided in [39]

TABLE 1. Available public datasets on compound facial expression. Note
that ‘‘Contr. env.’’ means Controlled Environment.

were automatically obtained (in terms of recognized AU),
which could undesirably add noise to the problem.

III. DOMINANT AND COMPLEMENTARY EMOTION
RECOGNITION CHALLENGE
A. OVERALL DESCRIPTION
The iCV-MEFED dataset is designed to investigate com-
pound emotion recognition. All emotion categories covered
by the iCV-MEFED dataset are shown in Table 2. The
motivation in creating such dataset, beyond to help pushing
the research on the topic, is to explore how well emotion
expression-based models can perform on this relatively novel
and challenging task. The dataset includes 31250 frontal face
images with different emotions captured from 125 subjects,
whose gender distribution is relatively uniform. The subjects’
age range from 18 to 37, as well as different ethnicity and
appearance (e.g., hair styles, clothes, accessories, etc) are
presented. Images were obtained in a controlled environment
in order to focus on compound emotions and reduce prob-
lems introduced by, for example, background noise, strong
head pose variations, illumination changes, etc, which could
bias the results/analysis. The room where the images have
been obtained was illuminated with uniform light, hence
the variation of light changes can be ignored. Each subject
acted 50 different emotions (Table 2) and for each emotion
5 samples have been taken. Note that face ID’s are recorded
within the dataset structure, so that one can analyze different
performed emotions from a given individual. The images
were taken and labeled under the supervision of psycholo-
gists, and the subjects were trained/instructed to express such
wide range emotions.

B. ACQUISITION DETAILS
For each subject in the iCV-MEFED dataset, five sample
images were captured (for each compound emotion) by a
Canon 60D high resolution camera. In total, 50 distinct
compound emotions have been considered. All images were
captured under the same environment. The lightening condi-
tion was uniform, with a fixed background. Image resolution
was set to 5184 × 3456. The motivation of using such con-
trolled environment is to reduce pre-processing steps (such
as face alignment, denoising, etc), which could introduce
noise/errors to the problem, and focus on the compound
emotions recognition task. Moreover, high resolution images
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TABLE 2. 49 Dominant - complementary emotion combinations (the 50th emotion is neutral).

FIGURE 1. Illustrative sketch of the iCV-MEFED recordings setup.

can provide detailed information for compound emotion
recognition approaches. Finally, the dataset is divided into
training, validation and test sets, with 17, 500, 7, 500 and
6, 250 images, respectively. An illustration of the capturing
setup can be seen in Fig. 1. Few samples of the iCV-MEFED
dataset are shown in Fig. 2.
During recording, the subject were also instructed to

avoid excessive head movement and occlude face regions
(e.g., with hair and/or upper body movements). When record-
ing a specific emotion, a similar emotion example is simul-
taneously displayed as stimulus. If a person has any trouble
in expressing a specific emotion, the corresponding common
traits of this emotion are given so that he/she can train and
improve his/her action. For example, tightening the lips is
usually related to the contempt emotion.

Finished the capturing process, all sample images are given
to psychologists for assessment of the truthfulness of the
expressions. During this process, subject samples that do not
managed to sufficiently convey their emotions are discarded.
Even though participants are ordinary people (i.e., they are
not professional actors), the captured images have natural
looking and can benefit and help to push the research in the
field of compound emotion recognition and analysis.

In general, it is possible that some captured emotions may
appear weird/rare. Nevertheless, we believe they can also help
researchers to analyze any existing relationship (such as the
frequency) in comparison with other generated emotions, and
any other relationship that may exist in real life.

FIGURE 2. Few samples of the proposed dataset.

C. EVALUATION METRIC
The evaluation metric used in the Challenge [23] was defined
as the percentage of misclassified instances. Note that dur-
ing the challenge, the final rank is given according to the
misclassification rate on the test set. However, since two
emotions (both complementary and dominant) needed to be
correctly recognized in order to be considered a precise pre-
diction, in general, participants did not achieve high scores.
For instance, sometimes they were able to recognize the dom-
inant emotion but failed to recognize the complementary one
(or vice-versa). Nevertheless, even though other evaluation

26394 VOLUME 6, 2018
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FIGURE 3. Overview of the winner method (1st place) of the competition. The upper branch is a single CNN network. The
whole architecture constructs the multi-modality (fusion) network.

metric can be considered, we believe this was the most direct
way to rank participants.

IV. WINNER METHODS FROM PARTICIPANTS
In this section, we introduce the top three winners’ meth-
ods submitted to the challenge. All three methods adopted
Convolutional Neural Network (CNN) approaches to extract
features. Their main and general ideas are summarized as
follows: 1) The first ranked method exploited landmark dis-
placement as geometric representation of emotions, thus lead-
ing to better results compared with texture-only information;
2) The second ranked method adopted unsupervised learning
combined with multiple SVM classifiers; 3) The third ranked
method combined CNN inception-v3 with a discriminative
loss function (center loss). Next, further details of the top
three winner’s methods are given.

A. MULTI-MODALITY NETWORK WITH VISUAL AND
GEOMETRICAL INFORMATION (1ST PLACE)
The method proposed in [44]2 combined texture and geomet-
rical information in an end-to-end trained CNN. Texture fea-
tures are extracted using the AlexNet [45], and geometrical
features are represented by facial landmarks displacements.
Such fusion strategy achieved better result when compared
to texture-only or geometric-only based approaches.

1) PROPOSED SOLUTION
a: GEOMETRICAL REPRESENTATION
Winners’ method used Dlib [46]3 library for facial land-
mark extraction, and face alignment following [47]. Then,
facial landmarks are refined after face alignment. In their
approach, each face i (i.e., face ID) is first represented by an

2https://github.com/cleardusk/EmotionChallenge
3http://dlib.net/

average lm(i) landmark face:

lm(i)
=

1
N

N∑
j=1

l(i)j , (1)

where N is each face ID’s number of samples, which is about
250 in iCV-MEFED dataset, and l represents the flattened
vector of landmark. Finally, the geometrical representation is
extracted as the landmarks displacement:

lr (i) = l(i) − lm(i). (2)

where lr is landmark residual (or displacement).

b: NETWORK STRUCTURE
The network structure of this method is shown in Fig. 3.
Texture features are represented by the vector p1 ∈ R256

and geometrical feature by p2 ∈ R136. Both p1 and p2 are
concatenated into p ∈ R392, as illustrated in Fig. 3. The
concatenated feature p is fed into a fully connected layer
before hinge loss optimization.

In a nutshell, p1 can span a vector space V1 and its decision
boundary provided by classifier can correctly divide some
samples, but the discriminative ability is limited. Once the
landmarks displacement vector p2 is embedded, V1 can be
mapped from a lower dimension into a higher dimension
space V . Then V becomes more divisible because of the
effectiveness of p2. This map from low dimension to high
dimension is similar to kernel function in SVM.

2) IMPLEMENTATION DETAILS
In the training phase, the input image size is set to 224×224,
and the size of landmark displacement vector is 136 × 1.
The method uses stochastic gradient descent (SGD) with
a mini-batch size of 32 and the max iteration is 1 × 105.
The learning rate starts from 5 × 10−4, and it is divided by
5 every 20,000 iterations. A weight decay of 5 × 10−4 and
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FIGURE 4. Overview of the 2nd ranked method. Filters of the
convolutional layer are trained using k-means. Then, different
SVMs are trained and combined to improve the results.

a momentum of 0.9 are adopted. At test stage, p1 and p2
are computed, then concatenated as given as the input to the
classifier.

B. UNSUPERVISED LEARNING OF CONVOLUTIONAL
NEURAL NETWORKS (2ND PLACE)
Similarly to the winner approach, the second top-ranked
method also extracts and aligns all faces using the Dlib [46]
library. Then, face images are resized to 96 × 96 × 3. Next,
an unsupervised learning model described in [48] is applied.
It is a CNN model with filters trained layer-wise using
k-means clustering. While being a simple model, it turned
out to be very effective to address the problem proposed
in this challenge. Obtained results also indicate that wider
shallow networks can achieve better accuracy performances
than deeper ones. Fig. 4 illustrates the pipeline of this
method.

1) PROPOSED SOLUTION
The CNN structure consists of a batch-norm layer, convolu-
tional layer with 1024 filters (15 × 15 × 3), max-pooling
(12 × 12), a Rectified Linear Units (ReLU) rectifier and a
rootsift normalization. Principal component analysis (PCA)
is applied to extracted features. The number of principal com-
ponents was set to 500. Participants then take 10 subsets from
these 500 dimensional features. In the first subset, features are
projected on the first 50 principal components. In the second
subset, features are projected onto the first 100 principal
components, and so on. Thus, instead of training just one
classifier on 500 dimensional feature vectors, 10 classifiers
for different subsets of features are trained. A linear SVM
is chosen as a classifier and all 50 emotions are treated as
independent.

Note that in [48], one of the core steps during filter learn-
ing is recursive autoconvolution applied to images patches.
However, participants did not find it useful on the task of
compound emotion recognition and choose to learn filters
without recursive autoconvolution.

2) IMPLEMENTATION DETAILS
Filters are trained using k-means with ZCA-whitening fol-
lowing [48]. Filter size, pooling type and size, as well as
the SVM regularization constant are selected by 5 fold

FIGURE 5. Overview of the 3rd ranked method.

cross-validation. At feature extraction stage, amini-batch size
of 25 and augmentation of horizontal flipping are adopted.
As different SVMs are employed, based on the distinct sets
of extracted features, final prediction is obtained by averaging
individual SVM scores.

C. INCEPTION-V3 STRUCTURE WITH AUXILIARY
CENTER LOSS (3RD PLACE)
This method directly predicts emotion categories using a
Inception-V3 network structure. In order to increase the dis-
crimination of features for similar emotion classes, they also
adopted the center loss [49] as an auxiliary optimization
function. Proposed pipeline is shown in Fig. 5.

1) PROPOSED SOLUTION
a: BASE PIPELINE
First, Multi-task CNN (MTCNN) [50] is adopted to
parse face bounding boxes and landmarks. Then, face
images are aligned by affine transformation and resized to
224 × 224 × 3. Features are then extracted using the
Inception-V3 CNN. Finally, cross-entropy loss is applied to
for optimization.

b: DISCRIMINATIVE TRAINING
The cross-entropy loss works fine when the predicted
labels are mutually exclusive. However, the labels of the
iCV-MEFED dataset are interrelated (e.g., happily-angry and
surprisingly-angry). To address this problem, participants
adopted the center loss function as an auxiliary loss to reduce
the effect of similar label. The center loss can simultaneously
learns each class center of deep features and penalizes the
distances between the deep features and their correspond-
ing class center. This loss enhances the ability of model
to distinguish similar samples and improves the overall
performance.

2) IMPLEMENTATION DETAILS
The network is optimized by SGD and maximum number of
iteration is set to 1 × 105. For the first 3 × 104 iterations,
the learning rate is fixed to be 10−3. For the rest 7 × 104

iterations, the learning rate stays at 10−4. Weight decay is
4 × 10−4, momentum is 0.9 and all layers are initialized
following [51].
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TABLE 3. Label distribution (Emotion vs number of images) of EmotioNet
dataset [39] after transformation from AU to emotion category.

TABLE 5. The misclassification rates of three competition methods on the
validation and test sets of the iCV-MEFED dataset.

V. EXPERIMENT ANALYSIS
In this section, we perform a thorough comparison of the
three top-ranked methods on the iCV-MEFED dataset from
the organized challenge [23]. A detailed analysis including
misclassification rates, execution time, accuracy in relation
to each category and confusion matrix are provided and dis-
cussed.

As previously mentioned, there are mainly four pub-
lic datasets for compound facial emotion recognition:
CFEE [32], EmotionNet [39], RAF-DB [43] and the proposed
iCV-MEFED dataset. As the size of CFEE dataset is small
for CNN based methods, we opted to not use it in the exper-
iments. Although RAF-DB dataset contains about 30k face
images with 19 kinds of emotion categories, the distribution
is not well balanced. There are only 8 images of ‘‘fearfully
disgusted’’ and 86 images of ‘‘sadly surprised,’’ but the
emotion ‘‘happy’’ includes 5,957 images and ‘‘sad’’ includes
2,460 images. Thus RAF-DB is not considered because of its
unbalanced emotion distribution.

According to the transformation rule from AUs to emotion
category presented in [39], with respect to EmotioNet dataset,
we could obtain 105,203 images with emotion labels. The
distribution of each emotion category is shown in Table 3.
As it can be seen, the distribution of emotion categories is
extremely unbalanced. Most images have been assigned to
happy category, and the number of images of other categories
are very small and sometimes close to zero. The results might
be caused by inaccurate AUs [39] provided with the dataset.
Therefore, we also consider EmotionNet is not a proper
dataset to be used in our experiments.

A. OVERALL RECOGNITION ACCURACY
The emotion recognition for the three top-ranked methods
described not so far is treated as a classification task of the
50 classes shown in Table 2. Complementary and dominant
labels are indexed according to Table 4 to facilitate the eval-
uation process.

Obtained results of the top-3 ranked methods on the
iCV-MEFED dataset are shown in Table 5, using the eval-
uation metric described in Sec. III-C. It can be observed that
fine-grained emotion recognition is very challenging, and the
accuracy still has a big room for improvement. The winner
method (1st place), which are based on multi-modality

FIGURE 6. Top-5 accuracy of three competition methods on testing set of
the iCV-MEFED dataset.

network with texture and geometrical information, outper-
formed other two methods by a large margin.

Fig. 6 shows the top-k obtained accuracies of three meth-
ods on the iCV-MEFED dataset. As it can be observed,
the performance gap between the winner (1st method) and
other two methods is greater with the growth of k , demon-
strating its effectiveness in recognizing compound emotions.

B. ACCURACY OF EACH EMOTION CATEGORY
In this section we analyze the accuracy of each compound
emotion category. Fig. 7 shows the performance of there
methods on different emotion categories. For the top ranked
approach, the following emotions demonstrated to be better
recognized: 0 (neutral), 1 (angry), 9 (contempt), 33 (happy),
35 (happily surprised), 46 (surprisingly fearful),
49 (surprised). In relation to the second ranked approach,
the classification accuracy of the following emotions
achieved higher accuracy when compared to other methods:
7 (angrily surprised), 15 (disgustingly angry), 29 (happily
angry), 41 (sad) is better. For the third one, 2 (angrily
contempt), 5 (angrily happy), 47 (surprisingly happy) were
better recognized. From Fig. 7 it can also be observed that
some emotion categories are easy to be recognized (i.e., with
high accuracy associated values) whereas others are very
hard to be recognized. In general, the classification results
of three methods demonstrated to complement each other.
Future work combining the best of the three methods would
be an interesting way to improve the recognition rates and
advance the research on the field of compound emotions.

C. CONFUSION MATRIX ANALYSIS
In order to analyze the statistics of emotionmis-classification,
we generated the confusion matrix of different emotion
recognition methods among different categories (Fig. 9,
Fig. 10 and Fig. 11). We first analyzed each confusion matrix
individually and found that all methods easily mis-recognize
dominant and complementary emotions. It means that these
algorithms may correctly find that both emotions are present
(e.g., angry and sad), but they fail to recognize which one is

VOLUME 6, 2018 26397



J. Guo et al.: Dominant and Complementary Emotion Recognition From Still Images of Faces

TABLE 4. Label conversion table.

FIGURE 7. Accuracy performance obtained by each method on the test set of the iCV-MEFED dataset, in relation to each emotion category.

FIGURE 8. It shows some easy and difficult samples to recognize. Easy samples are shown in the first row and difficult samples are listed in the second
row. The accuracy of three methods is given in brackets in order.

the dominant (e.g., sadly-angry instead of angrily-sad) with
high probability. It demonstrates that dominant and comple-
mentary emotion recognition is a very challenging task.

For instance, if we check in detail Fig. 7, we will see
that the winner method (1st place) performed well on some
specific emotion categories (e.g. neutral, angry, disgustingly
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FIGURE 9. Confusion matrix of the first method. Each cell shows
corresponding prediction’s probability value, which is in range [0, 1].
The numbers of two axises are transformed labels following Table 4
(better view on electronic version).

TABLE 6. The top-10 hardest misclassified emotion categories for the
winner method (1st place).

happy, disgustingly sad, disgust, surprisingly fearful, sur-
prised). More specifically, its average accuracy of seven
basic emotions was 51.84%, while the average accuracy of
compound emotion was 13.7%. This demonstrates that the
basic emotions are more easier to recognize than dominant
and complementary emotion (i.e., when combined). In addi-
tion, from the confusion matrix shown in Fig. 9, it can be
observed that the winner method also obtained low accuracy
performance in recognizing dominant and complementary
emotions (listed in Table 6). From the Table 6, it can be
seen that some compound emotions are easy to confuse with
opposite compound emotions, such as surprisingly-happy and
happily-surprised, as well as surprisingly-angry and angrily-
surprised. This may happen due to the complexity of the task.

Fig. 10 and 11 show the confusion matrices for the second
and third ranked methods, respectively. Their corresponding
top-10 hardest misclassified emotions are listed in Table 7
and Table 8, respectively. In general, the hardest misclas-
sified emotions of the three proposed methods are similar.
For instance, three kinds of emotion pairs were strongly
misclassified for all three competition methods, which are
surprisingly-angry vs angrily-surprised, surprisingly-happy

FIGURE 10. Confusion matrix of the second ranked method. Each cell
shows corresponding prediction’s probability value, which is in range
[0, 1]. The numbers of two axises are transformed labels following
Table 4 (better view on electronic version).

FIGURE 11. Confusion matrix of the third ranked method, and each cell
shows corresponding prediction’s probability value, which is in range
[0, 1]. The numbers of two axises are transformed labels following
Table 4 (better view on electronic version).

vs happily-surprised, and angrily-happy vs happily-angry.
Few samples of these compound emotions are shown
in Fig. 12.

D. COMPUTATIONAL COST ANALYSIS
Table 9 shows computation time and the number of param-
eters among different methods. The proposed three meth-
ods were tested under the same environments (GPU: GTX
TITAN X, CPU: Xeon E5-2660@2.20GHz).

It can be seen that the winner method achieved the
fastest average inference time, requiring 1.57ms (using
GPU) or 30 ms (using CPU). Winner approach also has
relatively small number of parameters (compared with other
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FIGURE 12. Illustration of few emotion pairs with high misclassification rates.

TABLE 7. The top-10 hardest misclassified emotion categories for
the second ranked method.

TABLE 8. The top-10 hardest misclassified emotion categories for the
third ranked method.

TABLE 9. Computation time per image, and the number of parameters of
three competition methods. Note that M means megabytes.

approaches). Furthermore, the winner method adopted a
modified version of AlexNet to extract facial features, while
the third method employed the inception-V3 structure which
is deeper and demonstrated to require more computational
power. The second method used a shallow CNN to extract
features, however, the 50 adopted classifiers increased com-
putation time.

VI. CONCLUSION
In this work, we collected and released a new compound
facial emotion dataset, named iCV-MEFED, which includes
large number of labels, 50 categories to be specific, obtained

with the support of psychologists. The recognition of
compound emotions on the iCV-MEFED dataset demon-
strated to be very challenging, leaving a large room for
improvement. Top winners’ methods from FG 2017 work-
shop have been analyzed and compared. As it could be
observed, there are some compound emotions that are more
difficult to be recognized. Reported methods treated all
50 classes of emotions independently, meaning that prior
knowledge of dominant and complementary emotions were
not considered. How to incorporate prior information of dom-
inant and complementary categories into compound facial
emotion recognition is one question we want to address in
future work.
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